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A new approach to the old idea of deriving a bond-valence vector from the well-known bond-valence concept has
been proposed. The foundation of the proposal is the previous electrostatic model in which bond valences are
interpreted as electric fluxes. The outcome of this approach is actual vectorial quantities whose magnitudes are
strictly but nonlinearly related to the scalar bond valences and are directed along the bond lines. It has been
proved that the sum of all these bond-valence vectors drawn from a coordination center to its ligating atoms will
be close to zero for the complete coordination sphere. Therefore, unlike the scalar bond valences, the obtained
vectors provide information about the spatial arrangement of ligands. The geometrical consequences of the proposed
bond-valence vector (BVV) model are analyzed for the geometries of the carbonates, phosphates, and five-coordinated
organoaluminum compounds with CO3, PO4, and AlCO4 skeletons, respectively, retrieved from the Cambridge
Structural Database. For acyclic carbonates this BVV model allows one to predict the O−C−O angles with a mean
absolute error of 1.0° using the empirical C−O distances only. Furthermore, this BVV model is able to quantitatively
describe the strains in cyclic carbonates. The preliminary studies for NO2E, PO3E, and SO3E systems with a
strongly stereoactive lone electron pair (E) show that the model may serve as a quantitative description of the lone
electron pair effect on the coordination sphere. A great advantage of the presented BVV approach is that the
derived relation between a bond-valence vector, bond valence, and bond length is given by an uncomplicated
equation allowing quick and simple computations, thus providing a new analytical tool for describing the geometry
of a coordination sphere that may be applied for structure validation.

Introduction

Since the introduction of the bond number concept by
Pauling1 there has been continuous interest in the bond-
valence (BV) model and its application for interpretation and
prediction of bond lengths in various chemical systems in
the solid state.2 The well-established BV model operates with
bond valence as a scalar quantity, and the bond valences of
all bonds from a given atom sum to the valence of that atom.
However, the scalar bond valences do not provide informa-
tion about the spatial arrangement of ligands. Since, for both
covalent and ionic bonds, a more strongly bonded ligand
(greater bond valence) subtends a greater solid angle at the
coordination center, it has already been postulated to
transform the bond valence into a vector quantity which can
be used to characterize the role of a ligand in the coordination

sphere.3-5 All existing concepts of a vectorial description
of the coordination sphere postulate that (i) vectors drawn
from a coordination center to its ligands have magnitudes
equal (or proportional) to the corresponding bond valences
and (ii) for a complete coordination sphere the bond-valence
vector sum is close to zero.4,5 Nevertheless, in all models
the bond-valence vectors are only arbitrarily derived from
the scalar bond valences. In contrast, in this paper it is shown
that use of a simple electrostatic model of bond valence gives
a foundation to derive an actual vectorial quantity with a
magnitude strictly but nonlinearly related (approximately by
the quadratic function) to the scalar bond valence. The
validity of the proposed bond-valence vector (BVV) model
has been proven for a variety of molecules of the main-group
elements, and the usefulness of this new approach for
analysis of the coordination sphere geometry is presented.

* To whom correspondence should be addressed. Phone:+48 22
6225186. Fax:+48 22 6282741. E-mail: janzac@ch.pw.edu.pl.
(1) Pauling, L.J. Am. Chem. Soc.1929, 51, 1010-1026. Pauling, L.J.

Am. Chem. Soc.1947, 69, 542-553.
(2) Brown, I. D.The Chemical Bond in Inorganic Chemistry: The Bond

Valence Model; University Press: Oxford, 2002. Brown, I. D.Chem.
Soc. ReV. 1978, 7, 359-376 and references therein.

(3) Brown, I. D.Acta Crystallogr., Sect. B1988, B44, 545-553.
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The correlation between the bond length (dij) between the
ith andjth atoms and the valence of this bond (sij) is most
often presented in an inverse exponential, negative power,
or polynomial form. The most widely used empirical
expression for calculation ofsij has the form6

wheredij is the experimental bond length whilerij andb are
empirically determined constants for the giveni-j bond.
Brown tabulated these parameters for numerous bond types,
and they are easily available on the Web.7 rij is equal to the
length of a conceptual bond of a unit valence. When no
experimental data are present, it is possible to estimate the
rij value from the sum of atomic radii of theith andjth atoms
modified by an electronegativity-related correction term.8 The
parameterb is generally treated as a ‘universal’ constant,
often taken to be 0.37 Å.6,9 Nevertheless, one should be aware
of the close correspondence between theb parameter and
the bond-specific softness parameter. This justifies use of
specific (individual) values ofb to a given bond.10

A valuable physical interpretation of the bond-valence
model has been provided by Brown and his colleagues.11

Examination of the electrostatic field generated by ions was
performed, starting from the ionic model of the bond. It has
been shown that the Coulomb field around each ion could
be naturally divided into localized regions (bonds) which
are characterized by electric fluxes linking neighboring ions
of opposite charge. The hypothesis that the fluxes are the
same as the bond valences was proposed and verified. Brown
and his colleagues consequently stated that Gauss’ law is
mathematically equivalent to the bond-valence-sum rule.
Moreover, the bond-valence-electric flux equivalence is
fulfilled regardless of the bond character, i.e., the degree of
ionicity. Nevertheless, it was pointed out that such a simple
electrostatic model describes the structure well only if the
atoms carry a charge and are spherically symmetric, i.e., if
the monopole term of the Coulomb field strongly dominates
over the multipole terms. Thus, the model is expected to
work well when the central atom is hard by means of
Pearson’s definition, whereas for soft centers with asym-
metries in the distribution of electron density around the
central atom the effects of the multipoles should be included
in the model for the hypothesis to be fulfilled. This is a case
of electronically strained structures represented by com-
pounds with stereoactive lone pairs or transition-metal
complexes comprising d0 and d1 cations as well as those with
octahedral coordination that show Jahn-Teller distortions.

Results

Bond-Valence Vector Model.Let us now consider the
simplest, unstrained structural fragment comprising a coor-
dination center without lone electron pairs (i.e., the atomic
core) and surrounded by more electronegative, monodentate
donor ligands. The space around the nucleus of the coordina-
tion center can then be roughly divided into two parts: the
inner-electron part (core electrons) and the valence-electron
part. Thus, a closed equipotential surfaceSembracing most
of the inner shell electrons of the central atom can be defined
assuming that the net charge enclosed in the surface is equal
to the charge of the atomic core. Such a near-spherical
surface has a radius close to the ionic radius of the given
atomic core. For example, the radii of carbon or phosphorus
cores cover the localization region of 1s2 and 1s22s22p6 closed
shells, respectively. Thus, according to Brown’s model, the
electric flux,Φi, out of a closed spherical surface,S, obeys
Gauss’ law

whereQi is the charge of the core of the centralith atom,E
is the electric field, dA is a differential area element with an
outward facing surface normal defining its direction, andε0

is the permittivity of free space. According to the model
presented by Brown and his colleagues11 the sphereS can
be separated into bond regionsSij characterized by the scalar
electrostatic fluxesΦij related to thesij valences of thei-j
bonds

where

In an idealized case of spherical symmetry the electric
field, E, will be perpendicular to the sphere and almost
the same in magnitude in each point, which leads to the
equations

and

whereEc is the field on the sphere embracing the atomic
core of radiusRc andAij is the area of the surfaceSij.

To find a vector that has the property of summing to zero
I will consider integration of the electric field regardless of
the direction of the surface, i.e., when dA is treated as a
scalar. Thus, integration of the new vectorial quantity dv )
ε0EdA over the whole sphere in the case of an idealized
spherically symmetric field gives the zero vector
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Division of the sphere into theSij valence regions allows us
to define individual bond-valence vectorsvij in an analogous
manner

Thus, the resultant zero vectorvi can be regarded as the sum
over all vij vectors, which represent bonds between the
coordination center,i, and all ligating atoms,j, within the
coordination sphere (Figure 1)

The length of thevij vector will be, therefore, directly
connected with the bond-valencesij. However, due to the
curvature of the surfaceSij the length of thevij vector is not
equal to the bond-valencesij. To derive the relation between
sij andvij it is reasonable to assume that the surfaceSij on
the sphere is of a circular spherical cap shape. This is
undoubtedly true for the case of linear two-coordinate
systems but is only an estimation for higher coordination
numbers. In the latter case the bond surfaceSij takes the form
of a spherical polygon and in general can be asymmetrically
arranged around the bond direction. Nevertheless, because
of the difficulty in defining (in most cases) both the bond
path and the bond surface, the following useful simplification
has been introduced. It was assumed that the bond surface
Sij takes the form of a circular cap and is cut-out sym-
metrically around the bond direction on the spherical surface
of radiusRc by a cone with the vertex located at the center
of the sphere such that the area of the cap is equal tosij‚
4πRc

2/Qi (cf. eq 6). If E is perpendicular to the spherical
surface with constant magnitude (|E| ) Ec), then the integral
in eq 4 can be written as

where 2ϑij is the opening angle of the cone.
Consequently, according to eq 8 the bond-valence vector

vij is aligned along thei-j bond line to the negatively charged
jth ligand and has a magnitude proportional to the area of
the planar base of the cap

By eliminating theϑij value from both equations we easily
get the final relation

Summarizing the above-presented simplified electrostatic
model the following theses are proposed. (i) The bond
between the coordination centeri and the more electrone-
gative ligating atomj of sij valence can be represented by
the bond-valence vectorvij of the length defined by eq 12
and directed fromi to j. (ii) In stable symmetric coordination
spheres the vector-sum of all these vectors tends to be zero
vector (eq 9).

It should be clearly stated that the bond-valence vectors
of the magnitude given by the eq 12 and the direction along
the bond line are only an approximation of the actual vectors
from eqs 8 and 9. The exact equations for the particular case
in which the bond surfaceSij takes the form of a regular
spherical polygon are presented in the Supporting Informa-
tion. Examples of calculations performed according to both
the exact equation and eq 12 show that the discrepancies
between the obtained values are insignificant. Therefore,
despite considerable simplifications, the proposed relations
are reasonably well obeyed in practice as shown below.

Discussion

To provide a necessary test of the BVV model an analysis
of selected molecules using empirical structural data was
undertaken. It is obvious that eq 9 cannot hold for the
electronically strained structures with asymmetry in the
distribution of electron density in the core region when
multipole terms are important nor for systems in which the
coordination center has at least one lone electron pair in the
valence shell. Moreover, one can expect a nonzero bond-
valence vector sum for structures in which there are
additional constraints introduced by steric factors (e.g.,
strained ring systems, congested coordination spheres with
strong interligand repulsion) causing bond angles to be
strained.

Linear AXY Molecules. In the particular case of simple
two-coordinated unstrained linear molecules X-A-Y the
relation presented in eq 9 is always satisfied, although two
bond valences can be different. This relationship can easily
be obtained by considering the equation

The length of the resultant bond valence vector|vA| equals
zero if sAX + sAY ) QA, that is, if the bond valence sum rule
is fulfilled. It should be pointed out that while the bond
valence vectors necessarily sum to zero, the same is not true
of the traditionally defined valence vectors with magnitudes
equal to the bond valence.

Three-Coordinated Molecules. In order to verify the
applicability of the bond-valence vector method to three-
coordinated centers, 70 structures of carbonate derivatives

Figure 1. Schematic representation of a coordination center with assigned
bond-valence vectors,vij, and zeroing of the bond-valence vector sum for
the case of tetragonal geometry.

vij ) ∫Sij
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collected in the CSD12,13have been chosen. The set of crystal
data concerning CO3 skeletons was restricted to fragments
without strains introduced by cyclic systems, including
H-bridged ring motives. For all C-O bonds the bond
valences were calculated using an exponential relation (eq
1) with parametersrC-O ) 1.390 Å andb ) 0.37 Å.6 The
analyzed carbonates show diversified C-O bond valences
ranging between 1.0 and 1.9 v.u. (valence units). All
structural fragments are indeed planar, and the maximum
observed deviation of the carbon atom position from the
plane defined by the oxygen atoms (dC) is 0.032 Å.
According to eq 12 the length of the bond-valence vectors
vCO and the resultant vectorvC were calculated by setting
the carbon core chargeQC ) 4.

Figure 2 presents a histogram of the length of the resultant
vector vC whose quantities ought to be zero according to
the bond-valence vector sum rule (eq 9). As expected, the
majority of |vC| values (90%) is less than 0.05 and the
maximum value 0.116. However, for vectorial quantities it
is more informative to show their spatial distribution. For
this purpose, the orientation of the resultantvC vectors
relative to the CO3 skeleton were analyzed using the three-
dimensional Cartesian coordinate system. For almost planar
CO3 moieties it was convenient to place the origin on the
carbon atom and define three orthogonal axes as follows:

the y axis along the shortest C-O1 bond, thex axis in the
O1CO2 plane, and thezaxis perpendicular to this plane being
close to the molecule plane. The scatter plot presented in
Figure 3 clearly shows that the resultant vectorsvC projected
on thexy plane are distributed close to the origin, i.e., the
zero vector.

It is obvious that thez component of resultantvC vectors
(VCz) correlate well with parameters describing deviation of
CO3 skeleton from planarity. Indeed, the simple linear
relation betweenVCz anddC of the formVCz ) 2.05(3)dC was
found (r2 ) 0.985,dC in Å). One should notice that for planar
molecular moieties eq 9 allows us to evaluate O-C-O bond
angles using a simple trigonometric relation on the basis of
bond valences only, that is, if eq 9 is obeyed the three bond-
valence vectors must form a closed triangle from which the
bond angles can be calculated. A comparison of the observed
angles with calculated ones is presented in Figure 4. The
obtained relation is linear with a regression coefficientr2 )
0.967. The linear regression parameters, the slope and
intercept, are equal to 0.997(11) and 0.4(14)°, respectively.
In comparison, applying eq 9 for the bond-valence vectors
calculated according to earlier models4,5 in which the length
of the vector magnitude is equal to the appropriate bond
valence also provides a linear relation (crosses in Figure 4),
but the slope is much greater than 1 [2.69(3)] and the
intercept equals-202(3)°. It should be emphasized that in
the view of the proposed relation 11, the earlier models4,5

are valid only if the second term is constant for all bonds,
i.e., the bond valences do not differ significantly from one
another.

The presented analyses demonstrate that the BVV model
accurately describes the molecular geometry of carbonates
and predicts the value of the O-C-O angles with a mean
absolute error of 1.0° using the empirical C-O distances.

(12) (a) Allen, F. H.Acta Crystallogr., Sect. B2002, B58, 380-388. (b)
Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.;
McCabe, P.; Pearson, J.; Taylor, R.Acta Crystallogr., Sect. B2002,
B58, 389-397.

(13) The CSD (version 5.27, Aug 2006) search was restricted to the
structures containing the CO3 skeleton with an acyclic carbon atom.
Only structures with aR factor of less than 0.05, the meanσ(C-C)
e 0.01 Å, and those that had no errors and no disorder were
considered. The bond-valence-sum rule was checked, and three
structures that showed a carbon valence-sum greater than 4.5 or less
than 3.5 v.u. were rejected. In addition, crystal structures showing
eight-membered hydrogen-bridged ring motives (CO2H‚‚‚HO2C) were
manually excluded. The resulting data set comprises 70 entries with
90 CO3 fragments.

Figure 2. Histogram of the length of the resultant bond-valence vector,
vC, for carbonates.

Figure 3. Distribution of the resultant bond-valence vectors,vC, calculated
for carbonates and projected on the CO3 molecular plane with they axis
directed along the shortest CdO bond.
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Sterically Strained Carbonates.A detailed analysis of
the differences between predicted and observed angles for
structures with strains introduced by cyclic systems allows
us to divide the data into several subsets containing structures
with various types of strains. Accordingly, one may distin-
guish four groups of molecules: cyclic carbonates comprising
five- and six-membered rings, chelate carbonate complexes,
and H-bonded dimeric bicarbonate anions (inset in Figure
5).12,14

The scatter plot of the resultant bond-valence vectorsvC

projected on thexy plane (Figure 5) shows systematic
deviation ofVCy components (along CdO1 “double” bonds)
from zero for each group. The highest positive deviation of
∼0.15 v.u. is observed for cyclocarbonates with a six-
membered ring, indicating that the large ring strains cause a
considerable increase (by an average 12°) in the value of
the internal O2-C-O3 angle relative to unstrained acyclic
systems. The deviation ofVCy components from zero in five-
membered cyclic carbonates and, accordingly, the ring-strain

magnitude are smaller than in the previous group (an average
VCy ) 0.062 v.u.), which is consistent, for example, with the
evaluated ring-strain energy difference between five- and six-
membered cyclic carbonates.15 For the hydrogen-bridged
dimeric structures the effect is much less marked but still
visible (an averageVCy ) 0.033 v.u.). This feature may be
the result of short repulsive H‚‚‚H contacts of about 2.2 Å.
The significance of such interactions is often overlooked,
but as stated by Steiner, they impose serious constraints on
the geometry of cyclic H-bonded structures.16 The opposite
propensity is observed in chelating carbonates. The interac-
tion of both oxygen atoms with the metallic coordination
center resulted in a slight decrease of internal O2-C-O3

angle, and hence, small negative values of theVCy compo-
nents (meanVCy ) -0.022) are observed.

Four-Coordinated Molecules.To confirm the validity of
the BVV model for four-coordinated molecules the experi-
mental points for the phosphate derivatives with a PO4

skeleton exhibiting relatively wide spectra of bond valences
were selected. As in the case of carbonates, only highly
accurate structural data for acyclic phosphates were retrieved
from CSD.12,17The bond valences and bond-valence vectors
for all P-O bonds were calculated using eqs 1 and 12,
respectively, and settingQP ) 5. The appropriate parameters,

(14) Crystal data for cyclic carbonates comprising five- or six-membered
ring, chelating carbonate group, and H-bonded dimeric bicarbonate
anions with eight-membered ring were retrieved from the CSD (version
5.27, Aug 2006). Structures were included ifR < 0.05, the meanσ-
(C-C) e 0.01 Å, and the coordinate set is error free. The bond-
valence-sum rule was checked, and structures that showed a carbon
valence-sum greater than 4.5 v.u. were rejected. The resulting four
data sets comprise 35(30), 19(19), 14(13), and 46(38) fragments
(entries) for five-membered, six-membered, chelated, and H-bonded
ring moieties, respectively.

(15) Tomita, H.; Sanda, F.; Endo, T.J. Polym. Sci., Part A: Polym. Chem.
2001, 39, 162-168.

(16) Steiner, T.Angew. Chem., Int. Ed.2002, 41, 48-76.
(17) Crystallographic coordinates for the phosphate derivatives were

retrieved from the CSD (version 5.27, Aug 2006). Structures were
only included in this study ifR < 0.05, the meanσ(C-C) e 0.005 Å,
and the coordinate set is error free. The bond-valence-sum rule was
checked, and two structures that showed a phosphorus valence-sum
greater than 5.5 v.u. were rejected. In addition, crystal structures
showing disorder were excluded. The resulting data set comprises 316
structures and 414 PO4 fragments.

Figure 4. Scatter plots of the calculated (vertical axis) vs observed
(horizontal axis) O-C-O angles for carbonates. The magnitude of the C-O
bond-valence vector is (i) calculated according to eq 12 (circles) and (ii)
equal to the appropriate bond-valence (crosses).

Figure 5. Distribution of the resultant bond-valence vectors,vC, projected
on the CO3 molecular plane with they axis directed along the shortest Cd
O bond for (i) cyclic carbonates with six-membered ring (squares), (ii) cyclic
carbonates with five-membered ring (×), (iii) H-bonded dimeric bicarbonate
anions (circles), and (iv) chelating carbonate groups (+).
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rP-O ) 1.617 Å andb ) 0.37 Å, were taken according to
Brown and Altermatt.6 The frequency distribution of the
calculated lengths of the resultant bond-valence vectors,vP,
are presented in Figure 6, and almost all of the vectors are
shorter than 0.1.

In order to clarify the presentation, the resultantvP bond-
valence vector for each molecular moiety has been projected
on the direction of each of the four P-O bonds. In
consequence, for each molecular PO4 fragment one obtains
four residual vectors,δVPj, showing the magnitude of
deviation along bond lines from zero predicted by the model.
Figure 7 presents the scatter plot ofδVPj versus the appropri-
ate bond valence,sPj. In the case of 1656 P-O bonds, for
significant variation ofsPj values from 0.9 to 1.5 v.u. the
spread ofδVPj values around zero is relatively small and
ranges(0.1 v.u. (esd) 0.032). Moreover, what is essential
is that these two variables do not correlate (r2 ) 0.01) and

δVPj values are spread around zero with a normal distribution.
Thus, the condition of zeroing ofvP may be regarded as
fulfilled. It is worth mentioning that the results obtained from
the vectorial approach are generally in line with the correla-
tions found by Murray-Rust et al. for deformed tetrahedral
molecules of approximateC3V symmetry that mapSN1
reaction pathways.18

Five-Coordinated Organoaluminum Complexes. In
order to show the wide range of applicability of the proposed
model, the case of heteroligand systems has also been
analyzed. For this purpose, due to my particular interest in
organoaluminum compounds, I chose five-coordinate alu-
minum complexes with CAlO4 skeletons, i.e., monoalkyla-
luminum complexes with four ligating oxygen atoms. In such
compounds the coordination sphere usually takes the inter-
mediate form between the trigonal bipyramid and square
pyramid with the carbon atom in equatorial and apical
positions, respectively. Moreover, it is important to realize
that such systems cannot be treated as unstrained structures
due to the presence of various ring constraints, and thus,
deviations from the model are expected. Nevertheless, these
structures still serve as a reliable source of information.

Crystal data for 24 complexes served for further analysis.19

Bond valences were calculated using eq 1 with the following
parameters:rAl-O ) 1.630 Å, rAl-C ) 1.914 Å,20 and a
common constantb ) 0.37 Å. It has been confirmed that
the chosen compounds obey the bond valences sum rule,
and the sum of experimental bond valences for aluminum
ranges from 2.7 to 3.1 v.u. The length of the bond-valence
vector was calculated for each aluminum center. Surprisingly,
even with the presence of structural strains the lengths of
the resultant bond-valence vectorvAl are short and in most
cases (22 fragments) less than 0.1 v.u., whereas the maximum
equals 0.142 v.u. The residual vectorsδVAl j (i.e., the
projection of the resultant vectorvAl on the Al-X j bond
direction) for all bonds were calculated in the same manner
as in the case of phosphates. The obtained results are
presented in Figure 8 as a scatter plot ofδVAl j vs sAl j. As in
the previous cases and despite the structural strains,δvAl j

are close to zero and almost all of them are in the range of
(0.1 v.u. From the point of view of the BVV model the
Al-C bond plays the most important role in the coordination
sphere since it has the most covalent character and thus the

(18) Murray-Rust, P.; Bu¨rgi, H.-B.; Dunitz, J. D.J. Am. Chem. Soc.1975,
97, 921-922.

(19) Crystallographic coordinates for organoaluminum complexes were
retrieved from the CSD (version 5.27, Aug 2006). Structures were
included if R < 0.075 and the coordinate set is error free. Crystal
structures showing disorder were excluded. The resulting data set
comprises 24 structures and 25 AlCO4 fragments.

(20) Owing to discrepancy between values reported forrAl-O parameter
(1.620 and 1.644 Å in ref 7 and 1.651 Å in ref 9) and lack of data for
the Al-C bond, the appropriate bond-valence parameters were
calculated. For that purpose, high-accuracy structural data of AlIII

complexes comprising AlO6, AlO4, and AlC4 central skeletons were
retrieved from CSD (version 5.28, Jan 2007,R e 0.05, σ(C-C) e
0.005 Å, no errors, no disorder). The resulting data sets comprised
35(27), 23(28), and 34(22) fragments(entries) for AlO6, AlO4, and
AlC4 moieties, respectively. Then therAl-O and rAl-C values which
minimized the sum of the squares of the difference between the
expected valence of aluminum (3) and the valence calculated from
the bond-valence sum were evaluated. The resultingrAl-O andrAl-C
bond-valence parameters are equal to 1.630 and 1.614 Å, respectively.

Figure 6. Histogram of the length of the resultant bond-valence vector,
vP, for phosphates.

Figure 7. Scatter plot of the residual bond-valence vectors (δVPj) vs
appropriate bond-valence (sPj) for phosphates.
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highest bond valence (0.80-0.95 v.u.), although independent
of the bond character (and bond valence) the residual vectors
are small. Among all 24 studied structures one (MOTCAZ)21

exhibits an atypical TBP coordination with the carbon atom
and an oxygen atom located in axial positions. In this
particular case the resultantvAl vector is also very short and
equals 0.026 v.u., which shows the versatility of this BVV
model.

Stereoactive Lone Pairs.An additional comment is
required for electronically strained structures, especially for
the structures where the coordination center is comprised of
a lone electron pair (LEP), which can be treated as a pseudo-
ligand. Previously, Brown3 and Wang et al.22 described the
stereochemical influence of LEP with the vectorial approach.
In order to measure the influence of LEP on the coordination
environments an appropriate vector called the eccentricity
parameter was defined.23 By analogy, the proposed BVV
model may also deliver a vectorial description of the lone
electron pair effect on the coordination sphere.

In order to show the way a lone pair is represented in the
BVV model NO2E, PO3E, and SO3E systems have been
analyzed. Their selection is due to the fact that in these
systems the lone electron pairs are strongly stereoactive. In
this work only the preliminary results are presented because
the detailed analysis is beyond the scope of this paper and
requires a wider discussion. The core charges of nitrogen,
phosphorus, and sulfur are taken as 5+, 5+, and 6+,
respectively. The resultant bond-valence vectors calculated
from bond lengths and angles24,25are plotted against experi-
mental bond-valence sums (Figure 9). In all cases the
variation of the resultant bond-valence vectors is rather small
(esd is equal to 0.025 for NO2E, 0.031 for PO3E, and 0.057
for SO3E). When the mean values of the resultant vectors
(1.15, 1.15, and 1.29) are used to calculate the “lone electron

pair valences” according to eq 12, the respective values are
obtained: 1.78, 1.78, and 1.87. They are close to the value
of 2, i.e., the lone electron pair charge. The discrepancies
between these values and 2 may be understood in terms of
a stronger penetration of the atomic core region by non-
bonding electrons than in the case of bonding ones. This
conclusion is consistent with the VSEPR proposal that the
lone pair is only a partial lone pair with some of its electron
density in the valence shell and some in the core.26 Therefore,
I propose, similarly as for the bonds, to ascribe the appropri-
ate electric flux to nonbonding electrons. In this sense the
lone electron pair may be described by a valence close to 2,
as it was proposed a long time ago by Brown,27 and the
corresponding lone-pair valence vector. It is noteworthy that
the BVV approach may be used to describe the lone electron
pair by a vector only when the LEP is strongly stereoactive
because in such a case the system lone electron pair-atomic
core may be described as a dipole. In other instances, for
proper description, the higher multipoles must be taken into
account. On this basis the BVV model may serve as a
quantitative description of the lone electron pair effect, that

(21) MOTCAZ is (µ4-oxo)-hexakis(µ2-methoxo)-hexachloromethyl-tris-
(tetrahydrofuran)aluminum-trizirconium: Sobota, P.; Przybylak, S.;
Utko, J.; Jerzykiewicz, L. B.Organometallics2002, 21, 3497-3499.

(22) Wang, X.; Liebau, F.Z. Kristallogr. 1996, 211, 437-439.
(23) Wang, X.; Liebau, F.Acta Crystallogr., Sect. B2007, B63, 216-228.

(24) Crystallographic coordinates for PO3E and SO3E skeletons were
retrieved from the CSD (version 5.28, Jan 2007). Structures were
included if R e 0.05 and the coordinate set was error free. Crystal
structures showing disorder were excluded. Bond valences were
calculated using eq 1 with the following parameters:rP-O ) 1.630 Å
(ref 6) andrS-O ) 1.644 Å (ref 7). The bond-valence-sum rule was
checked, and if the value differed by 0.30 v.u. or more from the
expected oxidation states (+3 for P and+4 for S), then those structures
were rejected. The resulting data sets comprise 58(31) and 56(47)
fragments(entries) for PO3E and SO3E, respectively.

(25) Crystallographic coordinates for NO2E skeletons were retrieved from
the CSD (version 5.28, Jan 2007). Structures were included ifR e
0.05, the meanσ(C-C) e 0.005 Å, and the coordinate set was error
and disorder free. Since the previously reported bond-valence param-
eterrN-O ) 1.361 Å for NIII -O bonds (ref 6) considerably underes-
timates the bond-valence-sum of nitrogen, therN-O parameter which
minimized the sum of the squares of the difference between the
expected valence of nitrogen (3) and the valence calculated from the
bond-valence-sum was estimated. Further, for each fragment the bond-
valence-sum rule was checked, and if the value differed by 0.30 v.u.
or more from the expected oxidation state of 3+, then those structures
were rejected, and subsequently, a newrN-O was evaluated. The final
rN-O value of 1.397 Å was calculated using the data set of 54 entries
containing 68 NO2 skeletons.

(26) Pilme, J.; Robinson, E. A.; Gillespie, R. J.Inorg. Chem.2006, 45,
6198-6204.

(27) Brown, I. D.J. Am. Chem. Soc.1980, 102, 2112-2113.

Figure 8. Scatter plot of residual bond-valence vectors (δVAlj ) vs
appropriate bond-valence (sAlj ) for five-coordinated aluminum complexes
with CAlO4 skeleton. The squares and crosses correspond to Al-C and
Al-O bonds, respectively.

Figure 9. Length of the resultant bond-valence vector plotted against bond-
valence-sum for NO2E, PO3E, and SO3E polyhedra. Dashed lines denote
the length of bond-valence vectors calculated for bond-valence equal to 2.
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is, it can be used as a link between the bond-valence and
the VSEPR models.28

The present study does not deal with d- and f-element
complexes since the description of d- and f-valence electrons
requires special treatment and more sophisticated models.
Additionally, a distortion of the core region of these elements
from a spherical shape occurs,29 whereas the sphericity of
the central core is the main assumption of the BVV model.

Conclusions

A reasonable accuracy of the predicted geometrical rela-
tions with the experimental data proves the correctness of
the BVV model (at least in the case of the studied systems)
and usefulness of the simple electrostatic model of bond
valence proposed by Brown and his colleagues.11 The BVV
model provides an analytical tool for describing the geometry

of coordination spheres. It allows us to identify and
quantitatively estimate both steric and electronic factors,
which cause deformation of the “ideal’ structure. In this
sense, along with the bond-valence model, the BVV model
may be applied for structure validation. A great advantage
of this approach is that the relation between a bond length,
bond valence, and bond-valence vector is shown by an
uncomplicated equation allowing quick and simple computa-
tions.
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